DOGA-L1で適当に作った3DキャラクタをBlnederで加工、エクスポートし表示してみた。
一応下が動くデモ。カーソルキーかゲームコントローラで上下左右に動くのみ。 ちょっと視野角を狭めて、2Dっぽく表示するようにしている。
動作サンプル
ソースコード・リソース
/dev/2dshooting2/devver/20170412/css/style.css
* {
font-family: 'Meiryo';
font-size:12px;
}
.content {
width: 100%;
height: 100%;
margin-left: auto;
margin-right: auto;
margin-top: 0;
margin-bottom: 0;
padding: 0;
border: 0;
display: -webkit-flex;
display: -ms-flexbox;
display: -webkit-box;
display: flex;
-webkit-flex-direction: row;
-ms-flex-direction: row;
flex-direction: row;
-webkit-flex-wrap: nowrap;
-ms-flex-wrap: nowrap;
flex-wrap: nowrap;
}
.error {
position: relative;
margin: 0;
padding: 0;
border: 0;
}
.errorimg {
position: absolute;
left: 0;
top: 0;
}
.errortext {
position: absolute;
left: 0;
top: 0;
background-color: #505050;
background-color: rgba(80, 80, 80, 0.7);
color: white;
}
body {
padding: 0;
border: 0;
margin: 0;
}
.console {
display: block;
text-align: center;
margin-left: auto;
margin-right: auto;
padding: 0;
border: 0;
}
.console-debug {
text-align: center;
box-sizing: border-box;
-webkit-box-sizing: border-box;
margin-left: 0;
margin-right: 0;
padding: 0;
border: 0;
}
.info-display {
position: absolute;
}
#input-area:focus,
#input-area:invalid,
#input-area:valid,
#input-area:out-of-range {
position: absolute;
top: 200px;
left: 150px;
width: 100px;
height: 20px;
border: 0;
color: #000000;
color: rgba(0, 0, 0, 0.0);
background: rgba(0, 0, 0, 0);
outline-color: rgba(0, 0, 0, 0);
text-decoration: none;
-webkit-text-decoration-color: rgba(0, 0, 0, 0);
text-decoration-color: rgba(0, 0, 0, 0);
z-index: -3;
}
/* 開発支援ツール*/
.devtool {
border: 1px solid black;
box-sizing: border-box;
-webkit-box-sizing: border-box;
margin: 0;
padding: 0;
-webkit-flex-grow: 1;
-ms-flex-positive: 1;
flex-grow: 1;
}
/* メニュー */
.devtool ul.menu {
background:#303030;
color:white;
display: -webkit-flex;
display: -ms-flexbox;
display: -webkit-box;
display: flex;
-webkit-flex-direction: row;
-ms-flex-direction: row;
flex-direction: row;
-webkit-flex-wrap: nowrap;
-ms-flex-wrap: nowrap;
flex-wrap: nowrap;
list-style-type: none;
margin:0;
padding:0;
}
.devtool ul.menu li {
border-left: 1px solid black;
/*flex-grow: 1;*/
-ms-flex-preferred-size: 100px;
-webkit-flex-basis: 100px;
flex-basis: 100px;
background:#505050;
text-align: center;
color:white;
}
.devtool ul.menu li.active {
background: white;
color:black;
}
.devtool ul.menu li:hover {
color:red;
cursor: pointer;
}
/* ul.menu */
.devtool .controller {
margin:10px;
}
.devtool .controller button {
border:1px;
width:50px;
height:30px;
}
.devtool .controller button:hover {
background:red;
}
.devtool .controller button.play:before {
content: '➤';
}
.devtool .controller button.pause:before {
content: '||';
}
.devtool .controller button.stop:before {
content: '■'
}
.devtool #enemy.controller textarea {
width: 98%;
font-size:12px;
}
.devtool #enemy.controller textarea.formdata {}
.devtool .formation-editor,.devtool .movseq-editor {
width:95%;
font-size:10px;
}
.devtool .formation-editor table, .devtool .movseq-editor table {
border-collapse: collapse;
border:1px solid gray;
width:100%;
height:120px;
margin:5px;
}
.devtool .formation-editor table tr.selected, .devtool .movseq-editor table tr.selected {
background-color:pink;
}
.devtool .formation-editor table th, .devtool .movseq-editor table th {
color:white;
background-color: #505050;
width:50px;
}
.devtool .formation-editor table td, .devtool .movseq-editor table td {
text-align:right;
border:1px solid gray;
}
/dev/2dshooting2/devver/20170412/data/enemyFormationPattern.json
/dev/2dshooting2/devver/20170412/data/enemyMovePattern.json
/dev/2dshooting2/devver/20170412/data/test.1.json
/dev/2dshooting2/devver/20170412/data/test.json
/dev/2dshooting2/devver/20170412/index.html
<!DOCTYPE html>
<html>
<head>
<title>Galaxy Fight Game</title>
<meta name="keywords" content="WebGL,HTML5,three.js" />
<meta name="description" content="WebGL,HTML5,three.js" />
<meta charset="UTF-8">
<link rel="stylesheet" type="text/css" href="./css/style.css">
<script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/d3/3.5.12/d3.min.js"></script>
<script type="text/javascript" src="//cdnjs.cloudflare.com/ajax/libs/three.js/97/three.min.js"></script>
<script type="text/javascript" src="//threejs.org/examples/js/WebGL.js"></script>
<script type="text/javascript" src="//threejs.org/examples/js/libs/stats.min.js"></script>
<!--<script type="text/javascript" src="//localhost/scoket.io/socket.io/socket.io.js"></script>-->
<!-- <script type="text/javascript" src="http://www.sfpgmr.net/socket.io/socket.io.js"></script> -->
<script type="text/javascript" src="./js/dsp.js"></script>
<script type="text/javascript" src="./js/bundle.js"></script>
<script type="text/javascript">
if (!window.location.hostname.match(/localhost/)) {
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-15457703-9', 'auto');
ga('send', 'pageview');
}
</script>
</head>
<body id="body">
<div id="content" class="content"></div>
</body>
</html>
/dev/2dshooting2/devver/20170412/js/bundle.js
/dev/2dshooting2/devver/20170412/js/dsp.js
/*
* DSP.js - a comprehensive digital signal processing library for javascript
*
* Created by Corban Brook <corbanbrook@gmail.com> on 2010-01-01.
* Copyright 2010 Corban Brook. All rights reserved.
*
*/
////////////////////////////////////////////////////////////////////////////////
// CONSTANTS //
////////////////////////////////////////////////////////////////////////////////
/**
* DSP is an object which contains general purpose utility functions and constants
*/
var DSP = {
// Channels
LEFT: 0,
RIGHT: 1,
MIX: 2,
// Waveforms
SINE: 1,
TRIANGLE: 2,
SAW: 3,
SQUARE: 4,
// Filters
LOWPASS: 0,
HIGHPASS: 1,
BANDPASS: 2,
NOTCH: 3,
// Window functions
BARTLETT: 1,
BARTLETTHANN: 2,
BLACKMAN: 3,
COSINE: 4,
GAUSS: 5,
HAMMING: 6,
HANN: 7,
LANCZOS: 8,
RECTANGULAR: 9,
TRIANGULAR: 10,
// Loop modes
OFF: 0,
FW: 1,
BW: 2,
FWBW: 3,
// Math
TWO_PI: 2*Math.PI
};
// Setup arrays for platforms which do not support byte arrays
function setupTypedArray(name, fallback) {
// check if TypedArray exists
// typeof on Minefield and Chrome return function, typeof on Webkit returns object.
if (typeof this[name] !== "function" && typeof this[name] !== "object") {
// nope.. check if WebGLArray exists
if (typeof this[fallback] === "function" && typeof this[fallback] !== "object") {
this[name] = this[fallback];
} else {
// nope.. set as Native JS array
this[name] = function(obj) {
if (obj instanceof Array) {
return obj;
} else if (typeof obj === "number") {
return new Array(obj);
}
};
}
}
}
setupTypedArray("Float32Array", "WebGLFloatArray");
setupTypedArray("Int32Array", "WebGLIntArray");
setupTypedArray("Uint16Array", "WebGLUnsignedShortArray");
setupTypedArray("Uint8Array", "WebGLUnsignedByteArray");
////////////////////////////////////////////////////////////////////////////////
// DSP UTILITY FUNCTIONS //
////////////////////////////////////////////////////////////////////////////////
/**
* Inverts the phase of a signal
*
* @param {Array} buffer A sample buffer
*
* @returns The inverted sample buffer
*/
DSP.invert = function(buffer) {
for (var i = 0, len = buffer.length; i < len; i++) {
buffer[i] *= -1;
}
return buffer;
};
/**
* Converts split-stereo (dual mono) sample buffers into a stereo interleaved sample buffer
*
* @param {Array} left A sample buffer
* @param {Array} right A sample buffer
*
* @returns The stereo interleaved buffer
*/
DSP.interleave = function(left, right) {
if (left.length !== right.length) {
throw "Can not interleave. Channel lengths differ.";
}
var stereoInterleaved = new Float32Array(left.length * 2);
for (var i = 0, len = left.length; i < len; i++) {
stereoInterleaved[2*i] = left[i];
stereoInterleaved[2*i+1] = right[i];
}
return stereoInterleaved;
};
/**
* Converts a stereo-interleaved sample buffer into split-stereo (dual mono) sample buffers
*
* @param {Array} buffer A stereo-interleaved sample buffer
*
* @returns an Array containing left and right channels
*/
DSP.deinterleave = (function() {
var left, right, mix, deinterleaveChannel = [];
deinterleaveChannel[DSP.MIX] = function(buffer) {
for (var i = 0, len = buffer.length/2; i < len; i++) {
mix[i] = (buffer[2*i] + buffer[2*i+1]) / 2;
}
return mix;
};
deinterleaveChannel[DSP.LEFT] = function(buffer) {
for (var i = 0, len = buffer.length/2; i < len; i++) {
left[i] = buffer[2*i];
}
return left;
};
deinterleaveChannel[DSP.RIGHT] = function(buffer) {
for (var i = 0, len = buffer.length/2; i < len; i++) {
right[i] = buffer[2*i+1];
}
return right;
};
return function(channel, buffer) {
left = left || new Float32Array(buffer.length/2);
right = right || new Float32Array(buffer.length/2);
mix = mix || new Float32Array(buffer.length/2);
if (buffer.length/2 !== left.length) {
left = new Float32Array(buffer.length/2);
right = new Float32Array(buffer.length/2);
mix = new Float32Array(buffer.length/2);
}
return deinterleaveChannel[channel](buffer);
};
}());
/**
* Separates a channel from a stereo-interleaved sample buffer
*
* @param {Array} buffer A stereo-interleaved sample buffer
* @param {Number} channel A channel constant (LEFT, RIGHT, MIX)
*
* @returns an Array containing a signal mono sample buffer
*/
DSP.getChannel = DSP.deinterleave;
/**
* Helper method (for Reverb) to mix two (interleaved) samplebuffers. It's possible
* to negate the second buffer while mixing and to perform a volume correction
* on the final signal.
*
* @param {Array} sampleBuffer1 Array containing Float values or a Float32Array
* @param {Array} sampleBuffer2 Array containing Float values or a Float32Array
* @param {Boolean} negate When true inverts/flips the audio signal
* @param {Number} volumeCorrection When you add multiple sample buffers, use this to tame your signal ;)
*
* @returns A new Float32Array interleaved buffer.
*/
DSP.mixSampleBuffers = function(sampleBuffer1, sampleBuffer2, negate, volumeCorrection){
var outputSamples = new Float32Array(sampleBuffer1);
for(var i = 0; i<sampleBuffer1.length; i++){
outputSamples[i] += (negate ? -sampleBuffer2[i] : sampleBuffer2[i]) / volumeCorrection;
}
return outputSamples;
};
// Biquad filter types
DSP.LPF = 0; // H(s) = 1 / (s^2 + s/Q + 1)
DSP.HPF = 1; // H(s) = s^2 / (s^2 + s/Q + 1)
DSP.BPF_CONSTANT_SKIRT = 2; // H(s) = s / (s^2 + s/Q + 1) (constant skirt gain, peak gain = Q)
DSP.BPF_CONSTANT_PEAK = 3; // H(s) = (s/Q) / (s^2 + s/Q + 1) (constant 0 dB peak gain)
DSP.NOTCH = 4; // H(s) = (s^2 + 1) / (s^2 + s/Q + 1)
DSP.APF = 5; // H(s) = (s^2 - s/Q + 1) / (s^2 + s/Q + 1)
DSP.PEAKING_EQ = 6; // H(s) = (s^2 + s*(A/Q) + 1) / (s^2 + s/(A*Q) + 1)
DSP.LOW_SHELF = 7; // H(s) = A * (s^2 + (sqrt(A)/Q)*s + A)/(A*s^2 + (sqrt(A)/Q)*s + 1)
DSP.HIGH_SHELF = 8; // H(s) = A * (A*s^2 + (sqrt(A)/Q)*s + 1)/(s^2 + (sqrt(A)/Q)*s + A)
// Biquad filter parameter types
DSP.Q = 1;
DSP.BW = 2; // SHARED with BACKWARDS LOOP MODE
DSP.S = 3;
// Find RMS of signal
DSP.RMS = function(buffer) {
var total = 0;
for (var i = 0, n = buffer.length; i < n; i++) {
total += buffer[i] * buffer[i];
}
return Math.sqrt(total / n);
};
// Find Peak of signal
DSP.Peak = function(buffer) {
var peak = 0;
for (var i = 0, n = buffer.length; i < n; i++) {
peak = (Math.abs(buffer[i]) > peak) ? Math.abs(buffer[i]) : peak;
}
return peak;
};
// Fourier Transform Module used by DFT, FFT, RFFT
function FourierTransform(bufferSize, sampleRate) {
this.bufferSize = bufferSize;
this.sampleRate = sampleRate;
this.bandwidth = 2 / bufferSize * sampleRate / 2;
this.spectrum = new Float32Array(bufferSize/2);
this.real = new Float32Array(bufferSize);
this.imag = new Float32Array(bufferSize);
this.peakBand = 0;
this.peak = 0;
/**
* Calculates the *middle* frequency of an FFT band.
*
* @param {Number} index The index of the FFT band.
*
* @returns The middle frequency in Hz.
*/
this.getBandFrequency = function(index) {
return this.bandwidth * index + this.bandwidth / 2;
};
this.calculateSpectrum = function() {
var spectrum = this.spectrum,
real = this.real,
imag = this.imag,
bSi = 2 / this.bufferSize,
sqrt = Math.sqrt,
rval,
ival,
mag;
for (var i = 0, N = bufferSize/2; i < N; i++) {
rval = real[i];
ival = imag[i];
mag = bSi * sqrt(rval * rval + ival * ival);
if (mag > this.peak) {
this.peakBand = i;
this.peak = mag;
}
spectrum[i] = mag;
}
};
}
/**
* DFT is a class for calculating the Discrete Fourier Transform of a signal.
*
* @param {Number} bufferSize The size of the sample buffer to be computed
* @param {Number} sampleRate The sampleRate of the buffer (eg. 44100)
*
* @constructor
*/
function DFT(bufferSize, sampleRate) {
FourierTransform.call(this, bufferSize, sampleRate);
var N = bufferSize/2 * bufferSize;
var TWO_PI = 2 * Math.PI;
this.sinTable = new Float32Array(N);
this.cosTable = new Float32Array(N);
for (var i = 0; i < N; i++) {
this.sinTable[i] = Math.sin(i * TWO_PI / bufferSize);
this.cosTable[i] = Math.cos(i * TWO_PI / bufferSize);
}
}
/**
* Performs a forward transform on the sample buffer.
* Converts a time domain signal to frequency domain spectra.
*
* @param {Array} buffer The sample buffer
*
* @returns The frequency spectrum array
*/
DFT.prototype.forward = function(buffer) {
var real = this.real,
imag = this.imag,
rval,
ival;
for (var k = 0; k < this.bufferSize/2; k++) {
rval = 0.0;
ival = 0.0;
for (var n = 0; n < buffer.length; n++) {
rval += this.cosTable[k*n] * buffer[n];
ival += this.sinTable[k*n] * buffer[n];
}
real[k] = rval;
imag[k] = ival;
}
return this.calculateSpectrum();
};
/**
* FFT is a class for calculating the Discrete Fourier Transform of a signal
* with the Fast Fourier Transform algorithm.
*
* @param {Number} bufferSize The size of the sample buffer to be computed. Must be power of 2
* @param {Number} sampleRate The sampleRate of the buffer (eg. 44100)
*
* @constructor
*/
function FFT(bufferSize, sampleRate) {
FourierTransform.call(this, bufferSize, sampleRate);
this.reverseTable = new Uint32Array(bufferSize);
var limit = 1;
var bit = bufferSize >> 1;
var i;
while (limit < bufferSize) {
for (i = 0; i < limit; i++) {
this.reverseTable[i + limit] = this.reverseTable[i] + bit;
}
limit = limit << 1;
bit = bit >> 1;
}
this.sinTable = new Float32Array(bufferSize);
this.cosTable = new Float32Array(bufferSize);
for (i = 0; i < bufferSize; i++) {
this.sinTable[i] = Math.sin(-Math.PI/i);
this.cosTable[i] = Math.cos(-Math.PI/i);
}
}
/**
* Performs a forward transform on the sample buffer.
* Converts a time domain signal to frequency domain spectra.
*
* @param {Array} buffer The sample buffer. Buffer Length must be power of 2
*
* @returns The frequency spectrum array
*/
FFT.prototype.forward = function(buffer) {
// Locally scope variables for speed up
var bufferSize = this.bufferSize,
cosTable = this.cosTable,
sinTable = this.sinTable,
reverseTable = this.reverseTable,
real = this.real,
imag = this.imag,
spectrum = this.spectrum;
var k = Math.floor(Math.log(bufferSize) / Math.LN2);
if (Math.pow(2, k) !== bufferSize) { throw "Invalid buffer size, must be a power of 2."; }
if (bufferSize !== buffer.length) { throw "Supplied buffer is not the same size as defined FFT. FFT Size: " + bufferSize + " Buffer Size: " + buffer.length; }
var halfSize = 1,
phaseShiftStepReal,
phaseShiftStepImag,
currentPhaseShiftReal,
currentPhaseShiftImag,
off,
tr,
ti,
tmpReal,
i;
for (i = 0; i < bufferSize; i++) {
real[i] = buffer[reverseTable[i]];
imag[i] = 0;
}
while (halfSize < bufferSize) {
//phaseShiftStepReal = Math.cos(-Math.PI/halfSize);
//phaseShiftStepImag = Math.sin(-Math.PI/halfSize);
phaseShiftStepReal = cosTable[halfSize];
phaseShiftStepImag = sinTable[halfSize];
currentPhaseShiftReal = 1;
currentPhaseShiftImag = 0;
for (var fftStep = 0; fftStep < halfSize; fftStep++) {
i = fftStep;
while (i < bufferSize) {
off = i + halfSize;
tr = (currentPhaseShiftReal * real[off]) - (currentPhaseShiftImag * imag[off]);
ti = (currentPhaseShiftReal * imag[off]) + (currentPhaseShiftImag * real[off]);
real[off] = real[i] - tr;
imag[off] = imag[i] - ti;
real[i] += tr;
imag[i] += ti;
i += halfSize << 1;
}
tmpReal = currentPhaseShiftReal;
currentPhaseShiftReal = (tmpReal * phaseShiftStepReal) - (currentPhaseShiftImag * phaseShiftStepImag);
currentPhaseShiftImag = (tmpReal * phaseShiftStepImag) + (currentPhaseShiftImag * phaseShiftStepReal);
}
halfSize = halfSize << 1;
}
return this.calculateSpectrum();
};
FFT.prototype.inverse = function(real, imag) {
// Locally scope variables for speed up
var bufferSize = this.bufferSize,
cosTable = this.cosTable,
sinTable = this.sinTable,
reverseTable = this.reverseTable,
spectrum = this.spectrum;
real = real || this.real;
imag = imag || this.imag;
var halfSize = 1,
phaseShiftStepReal,
phaseShiftStepImag,
currentPhaseShiftReal,
currentPhaseShiftImag,
off,
tr,
ti,
tmpReal,
i;
for (i = 0; i < bufferSize; i++) {
imag[i] *= -1;
}
var revReal = new Float32Array(bufferSize);
var revImag = new Float32Array(bufferSize);
for (i = 0; i < real.length; i++) {
revReal[i] = real[reverseTable[i]];
revImag[i] = imag[reverseTable[i]];
}
real = revReal;
imag = revImag;
while (halfSize < bufferSize) {
phaseShiftStepReal = cosTable[halfSize];
phaseShiftStepImag = sinTable[halfSize];
currentPhaseShiftReal = 1;
currentPhaseShiftImag = 0;
for (var fftStep = 0; fftStep < halfSize; fftStep++) {
i = fftStep;
while (i < bufferSize) {
off = i + halfSize;
tr = (currentPhaseShiftReal * real[off]) - (currentPhaseShiftImag * imag[off]);
ti = (currentPhaseShiftReal * imag[off]) + (currentPhaseShiftImag * real[off]);
real[off] = real[i] - tr;
imag[off] = imag[i] - ti;
real[i] += tr;
imag[i] += ti;
i += halfSize << 1;
}
tmpReal = currentPhaseShiftReal;
currentPhaseShiftReal = (tmpReal * phaseShiftStepReal) - (currentPhaseShiftImag * phaseShiftStepImag);
currentPhaseShiftImag = (tmpReal * phaseShiftStepImag) + (currentPhaseShiftImag * phaseShiftStepReal);
}
halfSize = halfSize << 1;
}
var buffer = new Float32Array(bufferSize); // this should be reused instead
for (i = 0; i < bufferSize; i++) {
buffer[i] = real[i] / bufferSize;
}
return buffer;
};
/**
* RFFT is a class for calculating the Discrete Fourier Transform of a signal
* with the Fast Fourier Transform algorithm.
*
* This method currently only contains a forward transform but is highly optimized.
*
* @param {Number} bufferSize The size of the sample buffer to be computed. Must be power of 2
* @param {Number} sampleRate The sampleRate of the buffer (eg. 44100)
*
* @constructor
*/
// lookup tables don't really gain us any speed, but they do increase
// cache footprint, so don't use them in here
// also we don't use sepearate arrays for real/imaginary parts
// this one a little more than twice as fast as the one in FFT
// however I only did the forward transform
// the rest of this was translated from C, see http://www.jjj.de/fxt/
// this is the real split radix FFT
function RFFT(bufferSize, sampleRate) {
FourierTransform.call(this, bufferSize, sampleRate);
this.trans = new Float32Array(bufferSize);
this.reverseTable = new Uint32Array(bufferSize);
// don't use a lookup table to do the permute, use this instead
this.reverseBinPermute = function (dest, source) {
var bufferSize = this.bufferSize,
halfSize = bufferSize >>> 1,
nm1 = bufferSize - 1,
i = 1, r = 0, h;
dest[0] = source[0];
do {
r += halfSize;
dest[i] = source[r];
dest[r] = source[i];
i++;
h = halfSize << 1;
while (h = h >> 1, !((r ^= h) & h));
if (r >= i) {
dest[i] = source[r];
dest[r] = source[i];
dest[nm1-i] = source[nm1-r];
dest[nm1-r] = source[nm1-i];
}
i++;
} while (i < halfSize);
dest[nm1] = source[nm1];
};
this.generateReverseTable = function () {
var bufferSize = this.bufferSize,
halfSize = bufferSize >>> 1,
nm1 = bufferSize - 1,
i = 1, r = 0, h;
this.reverseTable[0] = 0;
do {
r += halfSize;
this.reverseTable[i] = r;
this.reverseTable[r] = i;
i++;
h = halfSize << 1;
while (h = h >> 1, !((r ^= h) & h));
if (r >= i) {
this.reverseTable[i] = r;
this.reverseTable[r] = i;
this.reverseTable[nm1-i] = nm1-r;
this.reverseTable[nm1-r] = nm1-i;
}
i++;
} while (i < halfSize);
this.reverseTable[nm1] = nm1;
};
this.generateReverseTable();
}
// Ordering of output:
//
// trans[0] = re[0] (==zero frequency, purely real)
// trans[1] = re[1]
// ...
// trans[n/2-1] = re[n/2-1]
// trans[n/2] = re[n/2] (==nyquist frequency, purely real)
//
// trans[n/2+1] = im[n/2-1]
// trans[n/2+2] = im[n/2-2]
// ...
// trans[n-1] = im[1]
RFFT.prototype.forward = function(buffer) {
var n = this.bufferSize,
spectrum = this.spectrum,
x = this.trans,
TWO_PI = 2*Math.PI,
sqrt = Math.sqrt,
i = n >>> 1,
bSi = 2 / n,
n2, n4, n8, nn,
t1, t2, t3, t4,
i1, i2, i3, i4, i5, i6, i7, i8,
st1, cc1, ss1, cc3, ss3,
e,
a,
rval, ival, mag;
this.reverseBinPermute(x, buffer);
/*
var reverseTable = this.reverseTable;
for (var k = 0, len = reverseTable.length; k < len; k++) {
x[k] = buffer[reverseTable[k]];
}
*/
for (var ix = 0, id = 4; ix < n; id *= 4) {
for (var i0 = ix; i0 < n; i0 += id) {
//sumdiff(x[i0], x[i0+1]); // {a, b} <--| {a+b, a-b}
st1 = x[i0] - x[i0+1];
x[i0] += x[i0+1];
x[i0+1] = st1;
}
ix = 2*(id-1);
}
n2 = 2;
nn = n >>> 1;
while((nn = nn >>> 1)) {
ix = 0;
n2 = n2 << 1;
id = n2 << 1;
n4 = n2 >>> 2;
n8 = n2 >>> 3;
do {
if(n4 !== 1) {
for(i0 = ix; i0 < n; i0 += id) {
i1 = i0;
i2 = i1 + n4;
i3 = i2 + n4;
i4 = i3 + n4;
//diffsum3_r(x[i3], x[i4], t1); // {a, b, s} <--| {a, b-a, a+b}
t1 = x[i3] + x[i4];
x[i4] -= x[i3];
//sumdiff3(x[i1], t1, x[i3]); // {a, b, d} <--| {a+b, b, a-b}
x[i3] = x[i1] - t1;
x[i1] += t1;
i1 += n8;
i2 += n8;
i3 += n8;
i4 += n8;
//sumdiff(x[i3], x[i4], t1, t2); // {s, d} <--| {a+b, a-b}
t1 = x[i3] + x[i4];
t2 = x[i3] - x[i4];
t1 = -t1 * Math.SQRT1_2;
t2 *= Math.SQRT1_2;
// sumdiff(t1, x[i2], x[i4], x[i3]); // {s, d} <--| {a+b, a-b}
st1 = x[i2];
x[i4] = t1 + st1;
x[i3] = t1 - st1;
//sumdiff3(x[i1], t2, x[i2]); // {a, b, d} <--| {a+b, b, a-b}
x[i2] = x[i1] - t2;
x[i1] += t2;
}
} else {
for(i0 = ix; i0 < n; i0 += id) {
i1 = i0;
i2 = i1 + n4;
i3 = i2 + n4;
i4 = i3 + n4;
//diffsum3_r(x[i3], x[i4], t1); // {a, b, s} <--| {a, b-a, a+b}
t1 = x[i3] + x[i4];
x[i4] -= x[i3];
//sumdiff3(x[i1], t1, x[i3]); // {a, b, d} <--| {a+b, b, a-b}
x[i3] = x[i1] - t1;
x[i1] += t1;
}
}
ix = (id << 1) - n2;
id = id << 2;
} while (ix < n);
e = TWO_PI / n2;
for (var j = 1; j < n8; j++) {
a = j * e;
ss1 = Math.sin(a);
cc1 = Math.cos(a);
//ss3 = sin(3*a); cc3 = cos(3*a);
cc3 = 4*cc1*(cc1*cc1-0.75);
ss3 = 4*ss1*(0.75-ss1*ss1);
ix = 0; id = n2 << 1;
do {
for (i0 = ix; i0 < n; i0 += id) {
i1 = i0 + j;
i2 = i1 + n4;
i3 = i2 + n4;
i4 = i3 + n4;
i5 = i0 + n4 - j;
i6 = i5 + n4;
i7 = i6 + n4;
i8 = i7 + n4;
//cmult(c, s, x, y, &u, &v)
//cmult(cc1, ss1, x[i7], x[i3], t2, t1); // {u,v} <--| {x*c-y*s, x*s+y*c}
t2 = x[i7]*cc1 - x[i3]*ss1;
t1 = x[i7]*ss1 + x[i3]*cc1;
//cmult(cc3, ss3, x[i8], x[i4], t4, t3);
t4 = x[i8]*cc3 - x[i4]*ss3;
t3 = x[i8]*ss3 + x[i4]*cc3;
//sumdiff(t2, t4); // {a, b} <--| {a+b, a-b}
st1 = t2 - t4;
t2 += t4;
t4 = st1;
//sumdiff(t2, x[i6], x[i8], x[i3]); // {s, d} <--| {a+b, a-b}
//st1 = x[i6]; x[i8] = t2 + st1; x[i3] = t2 - st1;
x[i8] = t2 + x[i6];
x[i3] = t2 - x[i6];
//sumdiff_r(t1, t3); // {a, b} <--| {a+b, b-a}
st1 = t3 - t1;
t1 += t3;
t3 = st1;
//sumdiff(t3, x[i2], x[i4], x[i7]); // {s, d} <--| {a+b, a-b}
//st1 = x[i2]; x[i4] = t3 + st1; x[i7] = t3 - st1;
x[i4] = t3 + x[i2];
x[i7] = t3 - x[i2];
//sumdiff3(x[i1], t1, x[i6]); // {a, b, d} <--| {a+b, b, a-b}
x[i6] = x[i1] - t1;
x[i1] += t1;
//diffsum3_r(t4, x[i5], x[i2]); // {a, b, s} <--| {a, b-a, a+b}
x[i2] = t4 + x[i5];
x[i5] -= t4;
}
ix = (id << 1) - n2;
id = id << 2;
} while (ix < n);
}
}
while (--i) {
rval = x[i];
ival = x[n-i-1];
mag = bSi * sqrt(rval * rval + ival * ival);
if (mag > this.peak) {
this.peakBand = i;
this.peak = mag;
}
spectrum[i] = mag;
}
spectrum[0] = bSi * x[0];
return spectrum;
};
function Sampler(file, bufferSize, sampleRate, playStart, playEnd, loopStart, loopEnd, loopMode) {
this.file = file;
this.bufferSize = bufferSize;
this.sampleRate = sampleRate;
this.playStart = playStart || 0; // 0%
this.playEnd = playEnd || 1; // 100%
this.loopStart = loopStart || 0;
this.loopEnd = loopEnd || 1;
this.loopMode = loopMode || DSP.OFF;
this.loaded = false;
this.samples = [];
this.signal = new Float32Array(bufferSize);
this.frameCount = 0;
this.envelope = null;
this.amplitude = 1;
this.rootFrequency = 110; // A2 110
this.frequency = 550;
this.step = this.frequency / this.rootFrequency;
this.duration = 0;
this.samplesProcessed = 0;
this.playhead = 0;
var audio = /* new Audio();*/ document.createElement("AUDIO");
var self = this;
this.loadSamples = function(event) {
var buffer = DSP.getChannel(DSP.MIX, event.frameBuffer);
for ( var i = 0; i < buffer.length; i++) {
self.samples.push(buffer[i]);
}
};
this.loadComplete = function() {
// convert flexible js array into a fast typed array
self.samples = new Float32Array(self.samples);
self.loaded = true;
};
this.loadMetaData = function() {
self.duration = audio.duration;
};
audio.addEventListener("MozAudioAvailable", this.loadSamples, false);
audio.addEventListener("loadedmetadata", this.loadMetaData, false);
audio.addEventListener("ended", this.loadComplete, false);
audio.muted = true;
audio.src = file;
audio.play();
}
Sampler.prototype.applyEnvelope = function() {
this.envelope.process(this.signal);
return this.signal;
};
Sampler.prototype.generate = function() {
var frameOffset = this.frameCount * this.bufferSize;
var loopWidth = this.playEnd * this.samples.length - this.playStart * this.samples.length;
var playStartSamples = this.playStart * this.samples.length; // ie 0.5 -> 50% of the length
var playEndSamples = this.playEnd * this.samples.length; // ie 0.5 -> 50% of the length
var offset;
for ( var i = 0; i < this.bufferSize; i++ ) {
switch (this.loopMode) {
case DSP.OFF:
this.playhead = Math.round(this.samplesProcessed * this.step + playStartSamples);
if (this.playhead < (this.playEnd * this.samples.length) ) {
this.signal[i] = this.samples[this.playhead] * this.amplitude;
} else {
this.signal[i] = 0;
}
break;
case DSP.FW:
this.playhead = Math.round((this.samplesProcessed * this.step) % loopWidth + playStartSamples);
if (this.playhead < (this.playEnd * this.samples.length) ) {
this.signal[i] = this.samples[this.playhead] * this.amplitude;
}
break;
case DSP.BW:
this.playhead = playEndSamples - Math.round((this.samplesProcessed * this.step) % loopWidth);
if (this.playhead < (this.playEnd * this.samples.length) ) {
this.signal[i] = this.samples[this.playhead] * this.amplitude;
}
break;
case DSP.FWBW:
if ( Math.floor(this.samplesProcessed * this.step / loopWidth) % 2 === 0 ) {
this.playhead = Math.round((this.samplesProcessed * this.step) % loopWidth + playStartSamples);
} else {
this.playhead = playEndSamples - Math.round((this.samplesProcessed * this.step) % loopWidth);
}
if (this.playhead < (this.playEnd * this.samples.length) ) {
this.signal[i] = this.samples[this.playhead] * this.amplitude;
}
break;
}
this.samplesProcessed++;
}
this.frameCount++;
return this.signal;
};
Sampler.prototype.setFreq = function(frequency) {
var totalProcessed = this.samplesProcessed * this.step;
this.frequency = frequency;
this.step = this.frequency / this.rootFrequency;
this.samplesProcessed = Math.round(totalProcessed/this.step);
};
Sampler.prototype.reset = function() {
this.samplesProcessed = 0;
this.playhead = 0;
};
/**
* Oscillator class for generating and modifying signals
*
* @param {Number} type A waveform constant (eg. DSP.SINE)
* @param {Number} frequency Initial frequency of the signal
* @param {Number} amplitude Initial amplitude of the signal
* @param {Number} bufferSize Size of the sample buffer to generate
* @param {Number} sampleRate The sample rate of the signal
*
* @contructor
*/
function Oscillator(type, frequency, amplitude, bufferSize, sampleRate) {
this.frequency = frequency;
this.amplitude = amplitude;
this.bufferSize = bufferSize;
this.sampleRate = sampleRate;
//this.pulseWidth = pulseWidth;
this.frameCount = 0;
this.waveTableLength = 2048;
this.cyclesPerSample = frequency / sampleRate;
this.signal = new Float32Array(bufferSize);
this.envelope = null;
switch(parseInt(type, 10)) {
case DSP.TRIANGLE:
this.func = Oscillator.Triangle;
break;
case DSP.SAW:
this.func = Oscillator.Saw;
break;
case DSP.SQUARE:
this.func = Oscillator.Square;
break;
default:
case DSP.SINE:
this.func = Oscillator.Sine;
break;
}
this.generateWaveTable = function() {
Oscillator.waveTable[this.func] = new Float32Array(2048);
var waveTableTime = this.waveTableLength / this.sampleRate;
var waveTableHz = 1 / waveTableTime;
for (var i = 0; i < this.waveTableLength; i++) {
Oscillator.waveTable[this.func][i] = this.func(i * waveTableHz/this.sampleRate);
}
};
if ( typeof Oscillator.waveTable === 'undefined' ) {
Oscillator.waveTable = {};
}
if ( typeof Oscillator.waveTable[this.func] === 'undefined' ) {
this.generateWaveTable();
}
this.waveTable = Oscillator.waveTable[this.func];
}
/**
* Set the amplitude of the signal
*
* @param {Number} amplitude The amplitude of the signal (between 0 and 1)
*/
Oscillator.prototype.setAmp = function(amplitude) {
if (amplitude >= 0 && amplitude <= 1) {
this.amplitude = amplitude;
} else {
throw "Amplitude out of range (0..1).";
}
};
/**
* Set the frequency of the signal
*
* @param {Number} frequency The frequency of the signal
*/
Oscillator.prototype.setFreq = function(frequency) {
this.frequency = frequency;
this.cyclesPerSample = frequency / this.sampleRate;
};
// Add an oscillator
Oscillator.prototype.add = function(oscillator) {
for ( var i = 0; i < this.bufferSize; i++ ) {
//this.signal[i] += oscillator.valueAt(i);
this.signal[i] += oscillator.signal[i];
}
return this.signal;
};
// Add a signal to the current generated osc signal
Oscillator.prototype.addSignal = function(signal) {
for ( var i = 0; i < signal.length; i++ ) {
if ( i >= this.bufferSize ) {
break;
}
this.signal[i] += signal[i];
/*
// Constrain amplitude
if ( this.signal[i] > 1 ) {
this.signal[i] = 1;
} else if ( this.signal[i] < -1 ) {
this.signal[i] = -1;
}
*/
}
return this.signal;
};
// Add an envelope to the oscillator
Oscillator.prototype.addEnvelope = function(envelope) {
this.envelope = envelope;
};
Oscillator.prototype.applyEnvelope = function() {
this.envelope.process(this.signal);
};
Oscillator.prototype.valueAt = function(offset) {
return this.waveTable[offset % this.waveTableLength];
};
Oscillator.prototype.generate = function() {
var frameOffset = this.frameCount * this.bufferSize;
var step = this.waveTableLength * this.frequency / this.sampleRate;
var offset;
for ( var i = 0; i < this.bufferSize; i++ ) {
//var step = (frameOffset + i) * this.cyclesPerSample % 1;
//this.signal[i] = this.func(step) * this.amplitude;
//this.signal[i] = this.valueAt(Math.round((frameOffset + i) * step)) * this.amplitude;
offset = Math.round((frameOffset + i) * step);
this.signal[i] = this.waveTable[offset % this.waveTableLength] * this.amplitude;
}
this.frameCount++;
return this.signal;
};
Oscillator.Sine = function(step) {
return Math.sin(DSP.TWO_PI * step);
};
Oscillator.Square = function(step) {
return step < 0.5 ? 1 : -1;
};
Oscillator.Saw = function(step) {
return 2 * (step - Math.round(step));
};
Oscillator.Triangle = function(step) {
return 1 - 4 * Math.abs(Math.round(step) - step);
};
Oscillator.Pulse = function(step) {
// stub
};
function ADSR(attackLength, decayLength, sustainLevel, sustainLength, releaseLength, sampleRate) {
this.sampleRate = sampleRate;
// Length in seconds
this.attackLength = attackLength;
this.decayLength = decayLength;
this.sustainLevel = sustainLevel;
this.sustainLength = sustainLength;
this.releaseLength = releaseLength;
this.sampleRate = sampleRate;
// Length in samples
this.attackSamples = attackLength * sampleRate;
this.decaySamples = decayLength * sampleRate;
this.sustainSamples = sustainLength * sampleRate;
this.releaseSamples = releaseLength * sampleRate;
// Updates the envelope sample positions
this.update = function() {
this.attack = this.attackSamples;
this.decay = this.attack + this.decaySamples;
this.sustain = this.decay + this.sustainSamples;
this.release = this.sustain + this.releaseSamples;
};
this.update();
this.samplesProcessed = 0;
}
ADSR.prototype.noteOn = function() {
this.samplesProcessed = 0;
this.sustainSamples = this.sustainLength * this.sampleRate;
this.update();
};
// Send a note off when using a sustain of infinity to let the envelope enter the release phase
ADSR.prototype.noteOff = function() {
this.sustainSamples = this.samplesProcessed - this.decaySamples;
this.update();
};
ADSR.prototype.processSample = function(sample) {
var amplitude = 0;
if ( this.samplesProcessed <= this.attack ) {
amplitude = 0 + (1 - 0) * ((this.samplesProcessed - 0) / (this.attack - 0));
} else if ( this.samplesProcessed > this.attack && this.samplesProcessed <= this.decay ) {
amplitude = 1 + (this.sustainLevel - 1) * ((this.samplesProcessed - this.attack) / (this.decay - this.attack));
} else if ( this.samplesProcessed > this.decay && this.samplesProcessed <= this.sustain ) {
amplitude = this.sustainLevel;
} else if ( this.samplesProcessed > this.sustain && this.samplesProcessed <= this.release ) {
amplitude = this.sustainLevel + (0 - this.sustainLevel) * ((this.samplesProcessed - this.sustain) / (this.release - this.sustain));
}
return sample * amplitude;
};
ADSR.prototype.value = function() {
var amplitude = 0;
if ( this.samplesProcessed <= this.attack ) {
amplitude = 0 + (1 - 0) * ((this.samplesProcessed - 0) / (this.attack - 0));
} else if ( this.samplesProcessed > this.attack && this.samplesProcessed <= this.decay ) {
amplitude = 1 + (this.sustainLevel - 1) * ((this.samplesProcessed - this.attack) / (this.decay - this.attack));
} else if ( this.samplesProcessed > this.decay && this.samplesProcessed <= this.sustain ) {
amplitude = this.sustainLevel;
} else if ( this.samplesProcessed > this.sustain && this.samplesProcessed <= this.release ) {
amplitude = this.sustainLevel + (0 - this.sustainLevel) * ((this.samplesProcessed - this.sustain) / (this.release - this.sustain));
}
return amplitude;
};
ADSR.prototype.process = function(buffer) {
for ( var i = 0; i < buffer.length; i++ ) {
buffer[i] *= this.value();
this.samplesProcessed++;
}
return buffer;
};
ADSR.prototype.isActive = function() {
if ( this.samplesProcessed > this.release || this.samplesProcessed === -1 ) {
return false;
} else {
return true;
}
};
ADSR.prototype.disable = function() {
this.samplesProcessed = -1;
};
function IIRFilter(type, cutoff, resonance, sampleRate) {
this.sampleRate = sampleRate;
switch(type) {
case DSP.LOWPASS:
case DSP.LP12:
this.func = new IIRFilter.LP12(cutoff, resonance, sampleRate);
break;
}
}
IIRFilter.prototype.__defineGetter__('cutoff',
function() {
return this.func.cutoff;
}
);
IIRFilter.prototype.__defineGetter__('resonance',
function() {
return this.func.resonance;
}
);
IIRFilter.prototype.set = function(cutoff, resonance) {
this.func.calcCoeff(cutoff, resonance);
};
IIRFilter.prototype.process = function(buffer) {
this.func.process(buffer);
};
// Add an envelope to the filter
IIRFilter.prototype.addEnvelope = function(envelope) {
if ( envelope instanceof ADSR ) {
this.func.addEnvelope(envelope);
} else {
throw "Not an envelope.";
}
};
IIRFilter.LP12 = function(cutoff, resonance, sampleRate) {
this.sampleRate = sampleRate;
this.vibraPos = 0;
this.vibraSpeed = 0;
this.envelope = false;
this.calcCoeff = function(cutoff, resonance) {
this.w = 2.0 * Math.PI * cutoff / this.sampleRate;
this.q = 1.0 - this.w / (2.0 * (resonance + 0.5 / (1.0 + this.w)) + this.w - 2.0);
this.r = this.q * this.q;
this.c = this.r + 1.0 - 2.0 * Math.cos(this.w) * this.q;
this.cutoff = cutoff;
this.resonance = resonance;
};
this.calcCoeff(cutoff, resonance);
this.process = function(buffer) {
for ( var i = 0; i < buffer.length; i++ ) {
this.vibraSpeed += (buffer[i] - this.vibraPos) * this.c;
this.vibraPos += this.vibraSpeed;
this.vibraSpeed *= this.r;
/*
var temp = this.vibraPos;
if ( temp > 1.0 ) {
temp = 1.0;
} else if ( temp < -1.0 ) {
temp = -1.0;
} else if ( temp != temp ) {
temp = 1;
}
buffer[i] = temp;
*/
if (this.envelope) {
buffer[i] = (buffer[i] * (1 - this.envelope.value())) + (this.vibraPos * this.envelope.value());
this.envelope.samplesProcessed++;
} else {
buffer[i] = this.vibraPos;
}
}
};
};
IIRFilter.LP12.prototype.addEnvelope = function(envelope) {
this.envelope = envelope;
};
function IIRFilter2(type, cutoff, resonance, sampleRate) {
this.type = type;
this.cutoff = cutoff;
this.resonance = resonance;
this.sampleRate = sampleRate;
this.f = Float32Array(4);
this.f[0] = 0.0; // lp
this.f[1] = 0.0; // hp
this.f[2] = 0.0; // bp
this.f[3] = 0.0; // br
this.calcCoeff = function(cutoff, resonance) {
this.freq = 2 * Math.sin(Math.PI * Math.min(0.25, cutoff/(this.sampleRate*2)));
this.damp = Math.min(2 * (1 - Math.pow(resonance, 0.25)), Math.min(2, 2/this.freq - this.freq * 0.5));
};
this.calcCoeff(cutoff, resonance);
}
IIRFilter2.prototype.process = function(buffer) {
var input, output;
var f = this.f;
for ( var i = 0; i < buffer.length; i++ ) {
input = buffer[i];
// first pass
f[3] = input - this.damp * f[2];
f[0] = f[0] + this.freq * f[2];
f[1] = f[3] - f[0];
f[2] = this.freq * f[1] + f[2];
output = 0.5 * f[this.type];
// second pass
f[3] = input - this.damp * f[2];
f[0] = f[0] + this.freq * f[2];
f[1] = f[3] - f[0];
f[2] = this.freq * f[1] + f[2];
output += 0.5 * f[this.type];
if (this.envelope) {
buffer[i] = (buffer[i] * (1 - this.envelope.value())) + (output * this.envelope.value());
this.envelope.samplesProcessed++;
} else {
buffer[i] = output;
}
}
};
IIRFilter2.prototype.addEnvelope = function(envelope) {
if ( envelope instanceof ADSR ) {
this.envelope = envelope;
} else {
throw "This is not an envelope.";
}
};
IIRFilter2.prototype.set = function(cutoff, resonance) {
this.calcCoeff(cutoff, resonance);
};
function WindowFunction(type, alpha) {
this.alpha = alpha;
switch(type) {
case DSP.BARTLETT:
this.func = WindowFunction.Bartlett;
break;
case DSP.BARTLETTHANN:
this.func = WindowFunction.BartlettHann;
break;
case DSP.BLACKMAN:
this.func = WindowFunction.Blackman;
this.alpha = this.alpha || 0.16;
break;
case DSP.COSINE:
this.func = WindowFunction.Cosine;
break;
case DSP.GAUSS:
this.func = WindowFunction.Gauss;
this.alpha = this.alpha || 0.25;
break;
case DSP.HAMMING:
this.func = WindowFunction.Hamming;
break;
case DSP.HANN:
this.func = WindowFunction.Hann;
break;
case DSP.LANCZOS:
this.func = WindowFunction.Lanczoz;
break;
case DSP.RECTANGULAR:
this.func = WindowFunction.Rectangular;
break;
case DSP.TRIANGULAR:
this.func = WindowFunction.Triangular;
break;
}
}
WindowFunction.prototype.process = function(buffer) {
var length = buffer.length;
for ( var i = 0; i < length; i++ ) {
buffer[i] *= this.func(length, i, this.alpha);
}
return buffer;
};
WindowFunction.Bartlett = function(length, index) {
return 2 / (length - 1) * ((length - 1) / 2 - Math.abs(index - (length - 1) / 2));
};
WindowFunction.BartlettHann = function(length, index) {
return 0.62 - 0.48 * Math.abs(index / (length - 1) - 0.5) - 0.38 * Math.cos(DSP.TWO_PI * index / (length - 1));
};
WindowFunction.Blackman = function(length, index, alpha) {
var a0 = (1 - alpha) / 2;
var a1 = 0.5;
var a2 = alpha / 2;
return a0 - a1 * Math.cos(DSP.TWO_PI * index / (length - 1)) + a2 * Math.cos(4 * Math.PI * index / (length - 1));
};
WindowFunction.Cosine = function(length, index) {
return Math.cos(Math.PI * index / (length - 1) - Math.PI / 2);
};
WindowFunction.Gauss = function(length, index, alpha) {
return Math.pow(Math.E, -0.5 * Math.pow((index - (length - 1) / 2) / (alpha * (length - 1) / 2), 2));
};
WindowFunction.Hamming = function(length, index) {
return 0.54 - 0.46 * Math.cos(DSP.TWO_PI * index / (length - 1));
};
WindowFunction.Hann = function(length, index) {
return 0.5 * (1 - Math.cos(DSP.TWO_PI * index / (length - 1)));
};
WindowFunction.Lanczos = function(length, index) {
var x = 2 * index / (length - 1) - 1;
return Math.sin(Math.PI * x) / (Math.PI * x);
};
WindowFunction.Rectangular = function(length, index) {
return 1;
};
WindowFunction.Triangular = function(length, index) {
return 2 / length * (length / 2 - Math.abs(index - (length - 1) / 2));
};
function sinh (arg) {
// Returns the hyperbolic sine of the number, defined as (exp(number) - exp(-number))/2
//
// version: 1004.2314
// discuss at: http://phpjs.org/functions/sinh // + original by: Onno Marsman
// * example 1: sinh(-0.9834330348825909);
// * returns 1: -1.1497971402636502
return (Math.exp(arg) - Math.exp(-arg))/2;
}
/*
* Biquad filter
*
* Created by Ricard Marxer <email@ricardmarxer.com> on 2010-05-23.
* Copyright 2010 Ricard Marxer. All rights reserved.
*
*/
// Implementation based on:
// http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
function Biquad(type, sampleRate) {
this.Fs = sampleRate;
this.type = type; // type of the filter
this.parameterType = DSP.Q; // type of the parameter
this.x_1_l = 0;
this.x_2_l = 0;
this.y_1_l = 0;
this.y_2_l = 0;
this.x_1_r = 0;
this.x_2_r = 0;
this.y_1_r = 0;
this.y_2_r = 0;
this.b0 = 1;
this.a0 = 1;
this.b1 = 0;
this.a1 = 0;
this.b2 = 0;
this.a2 = 0;
this.b0a0 = this.b0 / this.a0;
this.b1a0 = this.b1 / this.a0;
this.b2a0 = this.b2 / this.a0;
this.a1a0 = this.a1 / this.a0;
this.a2a0 = this.a2 / this.a0;
this.f0 = 3000; // "wherever it's happenin', man." Center Frequency or
// Corner Frequency, or shelf midpoint frequency, depending
// on which filter type. The "significant frequency".
this.dBgain = 12; // used only for peaking and shelving filters
this.Q = 1; // the EE kind of definition, except for peakingEQ in which A*Q is
// the classic EE Q. That adjustment in definition was made so that
// a boost of N dB followed by a cut of N dB for identical Q and
// f0/Fs results in a precisely flat unity gain filter or "wire".
this.BW = -3; // the bandwidth in octaves (between -3 dB frequencies for BPF
// and notch or between midpoint (dBgain/2) gain frequencies for
// peaking EQ
this.S = 1; // a "shelf slope" parameter (for shelving EQ only). When S = 1,
// the shelf slope is as steep as it can be and remain monotonically
// increasing or decreasing gain with frequency. The shelf slope, in
// dB/octave, remains proportional to S for all other values for a
// fixed f0/Fs and dBgain.
this.coefficients = function() {
var b = [this.b0, this.b1, this.b2];
var a = [this.a0, this.a1, this.a2];
return {b: b, a:a};
};
this.setFilterType = function(type) {
this.type = type;
this.recalculateCoefficients();
};
this.setSampleRate = function(rate) {
this.Fs = rate;
this.recalculateCoefficients();
};
this.setQ = function(q) {
this.parameterType = DSP.Q;
this.Q = Math.max(Math.min(q, 115.0), 0.001);
this.recalculateCoefficients();
};
this.setBW = function(bw) {
this.parameterType = DSP.BW;
this.BW = bw;
this.recalculateCoefficients();
};
this.setS = function(s) {
this.parameterType = DSP.S;
this.S = Math.max(Math.min(s, 5.0), 0.0001);
this.recalculateCoefficients();
};
this.setF0 = function(freq) {
this.f0 = freq;
this.recalculateCoefficients();
};
this.setDbGain = function(g) {
this.dBgain = g;
this.recalculateCoefficients();
};
this.recalculateCoefficients = function() {
var A;
if (type === DSP.PEAKING_EQ || type === DSP.LOW_SHELF || type === DSP.HIGH_SHELF ) {
A = Math.pow(10, (this.dBgain/40)); // for peaking and shelving EQ filters only
} else {
A = Math.sqrt( Math.pow(10, (this.dBgain/20)) );
}
var w0 = DSP.TWO_PI * this.f0 / this.Fs;
var cosw0 = Math.cos(w0);
var sinw0 = Math.sin(w0);
var alpha = 0;
switch (this.parameterType) {
case DSP.Q:
alpha = sinw0/(2*this.Q);
break;
case DSP.BW:
alpha = sinw0 * sinh( Math.LN2/2 * this.BW * w0/sinw0 );
break;
case DSP.S:
alpha = sinw0/2 * Math.sqrt( (A + 1/A)*(1/this.S - 1) + 2 );
break;
}
/**
FYI: The relationship between bandwidth and Q is
1/Q = 2*sinh(ln(2)/2*BW*w0/sin(w0)) (digital filter w BLT)
or 1/Q = 2*sinh(ln(2)/2*BW) (analog filter prototype)
The relationship between shelf slope and Q is
1/Q = sqrt((A + 1/A)*(1/S - 1) + 2)
*/
var coeff;
switch (this.type) {
case DSP.LPF: // H(s) = 1 / (s^2 + s/Q + 1)
this.b0 = (1 - cosw0)/2;
this.b1 = 1 - cosw0;
this.b2 = (1 - cosw0)/2;
this.a0 = 1 + alpha;
this.a1 = -2 * cosw0;
this.a2 = 1 - alpha;
break;
case DSP.HPF: // H(s) = s^2 / (s^2 + s/Q + 1)
this.b0 = (1 + cosw0)/2;
this.b1 = -(1 + cosw0);
this.b2 = (1 + cosw0)/2;
this.a0 = 1 + alpha;
this.a1 = -2 * cosw0;
this.a2 = 1 - alpha;
break;
case DSP.BPF_CONSTANT_SKIRT: // H(s) = s / (s^2 + s/Q + 1) (constant skirt gain, peak gain = Q)
this.b0 = sinw0/2;
this.b1 = 0;
this.b2 = -sinw0/2;
this.a0 = 1 + alpha;
this.a1 = -2*cosw0;
this.a2 = 1 - alpha;
break;
case DSP.BPF_CONSTANT_PEAK: // H(s) = (s/Q) / (s^2 + s/Q + 1) (constant 0 dB peak gain)
this.b0 = alpha;
this.b1 = 0;
this.b2 = -alpha;
this.a0 = 1 + alpha;
this.a1 = -2*cosw0;
this.a2 = 1 - alpha;
break;
case DSP.NOTCH: // H(s) = (s^2 + 1) / (s^2 + s/Q + 1)
this.b0 = 1;
this.b1 = -2*cosw0;
this.b2 = 1;
this.a0 = 1 + alpha;
this.a1 = -2*cosw0;
this.a2 = 1 - alpha;
break;
case DSP.APF: // H(s) = (s^2 - s/Q + 1) / (s^2 + s/Q + 1)
this.b0 = 1 - alpha;
this.b1 = -2*cosw0;
this.b2 = 1 + alpha;
this.a0 = 1 + alpha;
this.a1 = -2*cosw0;
this.a2 = 1 - alpha;
break;
case DSP.PEAKING_EQ: // H(s) = (s^2 + s*(A/Q) + 1) / (s^2 + s/(A*Q) + 1)
this.b0 = 1 + alpha*A;
this.b1 = -2*cosw0;
this.b2 = 1 - alpha*A;
this.a0 = 1 + alpha/A;
this.a1 = -2*cosw0;
this.a2 = 1 - alpha/A;
break;
case DSP.LOW_SHELF: // H(s) = A * (s^2 + (sqrt(A)/Q)*s + A)/(A*s^2 + (sqrt(A)/Q)*s + 1)
coeff = sinw0 * Math.sqrt( (A^2 + 1)*(1/this.S - 1) + 2*A );
this.b0 = A*((A+1) - (A-1)*cosw0 + coeff);
this.b1 = 2*A*((A-1) - (A+1)*cosw0);
this.b2 = A*((A+1) - (A-1)*cosw0 - coeff);
this.a0 = (A+1) + (A-1)*cosw0 + coeff;
this.a1 = -2*((A-1) + (A+1)*cosw0);
this.a2 = (A+1) + (A-1)*cosw0 - coeff;
break;
case DSP.HIGH_SHELF: // H(s) = A * (A*s^2 + (sqrt(A)/Q)*s + 1)/(s^2 + (sqrt(A)/Q)*s + A)
coeff = sinw0 * Math.sqrt( (A^2 + 1)*(1/this.S - 1) + 2*A );
this.b0 = A*((A+1) + (A-1)*cosw0 + coeff);
this.b1 = -2*A*((A-1) + (A+1)*cosw0);
this.b2 = A*((A+1) + (A-1)*cosw0 - coeff);
this.a0 = (A+1) - (A-1)*cosw0 + coeff;
this.a1 = 2*((A-1) - (A+1)*cosw0);
this.a2 = (A+1) - (A-1)*cosw0 - coeff;
break;
}
this.b0a0 = this.b0/this.a0;
this.b1a0 = this.b1/this.a0;
this.b2a0 = this.b2/this.a0;
this.a1a0 = this.a1/this.a0;
this.a2a0 = this.a2/this.a0;
};
this.process = function(buffer) {
//y[n] = (b0/a0)*x[n] + (b1/a0)*x[n-1] + (b2/a0)*x[n-2]
// - (a1/a0)*y[n-1] - (a2/a0)*y[n-2]
var len = buffer.length;
var output = new Float32Array(len);
for ( var i=0; i<buffer.length; i++ ) {
output[i] = this.b0a0*buffer[i] + this.b1a0*this.x_1_l + this.b2a0*this.x_2_l - this.a1a0*this.y_1_l - this.a2a0*this.y_2_l;
this.y_2_l = this.y_1_l;
this.y_1_l = output[i];
this.x_2_l = this.x_1_l;
this.x_1_l = buffer[i];
}
return output;
};
this.processStereo = function(buffer) {
//y[n] = (b0/a0)*x[n] + (b1/a0)*x[n-1] + (b2/a0)*x[n-2]
// - (a1/a0)*y[n-1] - (a2/a0)*y[n-2]
var len = buffer.length;
var output = new Float32Array(len);
for (var i = 0; i < len/2; i++) {
output[2*i] = this.b0a0*buffer[2*i] + this.b1a0*this.x_1_l + this.b2a0*this.x_2_l - this.a1a0*this.y_1_l - this.a2a0*this.y_2_l;
this.y_2_l = this.y_1_l;
this.y_1_l = output[2*i];
this.x_2_l = this.x_1_l;
this.x_1_l = buffer[2*i];
output[2*i+1] = this.b0a0*buffer[2*i+1] + this.b1a0*this.x_1_r + this.b2a0*this.x_2_r - this.a1a0*this.y_1_r - this.a2a0*this.y_2_r;
this.y_2_r = this.y_1_r;
this.y_1_r = output[2*i+1];
this.x_2_r = this.x_1_r;
this.x_1_r = buffer[2*i+1];
}
return output;
};
}
/*
* Magnitude to decibels
*
* Created by Ricard Marxer <email@ricardmarxer.com> on 2010-05-23.
* Copyright 2010 Ricard Marxer. All rights reserved.
*
* @buffer array of magnitudes to convert to decibels
*
* @returns the array in decibels
*
*/
DSP.mag2db = function(buffer) {
var minDb = -120;
var minMag = Math.pow(10.0, minDb / 20.0);
var log = Math.log;
var max = Math.max;
var result = Float32Array(buffer.length);
for (var i=0; i<buffer.length; i++) {
result[i] = 20.0*log(max(buffer[i], minMag));
}
return result;
};
/*
* Frequency response
*
* Created by Ricard Marxer <email@ricardmarxer.com> on 2010-05-23.
* Copyright 2010 Ricard Marxer. All rights reserved.
*
* Calculates the frequency response at the given points.
*
* @b b coefficients of the filter
* @a a coefficients of the filter
* @w w points (normally between -PI and PI) where to calculate the frequency response
*
* @returns the frequency response in magnitude
*
*/
DSP.freqz = function(b, a, w) {
var i, j;
if (!w) {
w = Float32Array(200);
for (i=0;i<w.length; i++) {
w[i] = DSP.TWO_PI/w.length * i - Math.PI;
}
}
var result = Float32Array(w.length);
var sqrt = Math.sqrt;
var cos = Math.cos;
var sin = Math.sin;
for (i=0; i<w.length; i++) {
var numerator = {real:0.0, imag:0.0};
for (j=0; j<b.length; j++) {
numerator.real += b[j] * cos(-j*w[i]);
numerator.imag += b[j] * sin(-j*w[i]);
}
var denominator = {real:0.0, imag:0.0};
for (j=0; j<a.length; j++) {
denominator.real += a[j] * cos(-j*w[i]);
denominator.imag += a[j] * sin(-j*w[i]);
}
result[i] = sqrt(numerator.real*numerator.real + numerator.imag*numerator.imag) / sqrt(denominator.real*denominator.real + denominator.imag*denominator.imag);
}
return result;
};
/*
* Graphical Equalizer
*
* Implementation of a graphic equalizer with a configurable bands-per-octave
* and minimum and maximum frequencies
*
* Created by Ricard Marxer <email@ricardmarxer.com> on 2010-05-23.
* Copyright 2010 Ricard Marxer. All rights reserved.
*
*/
function GraphicalEq(sampleRate) {
this.FS = sampleRate;
this.minFreq = 40.0;
this.maxFreq = 16000.0;
this.bandsPerOctave = 1.0;
this.filters = [];
this.freqzs = [];
this.calculateFreqzs = true;
this.recalculateFilters = function() {
var bandCount = Math.round(Math.log(this.maxFreq/this.minFreq) * this.bandsPerOctave/ Math.LN2);
this.filters = [];
for (var i=0; i<bandCount; i++) {
var freq = this.minFreq*(Math.pow(2, i/this.bandsPerOctave));
var newFilter = new Biquad(DSP.PEAKING_EQ, this.FS);
newFilter.setDbGain(0);
newFilter.setBW(1/this.bandsPerOctave);
newFilter.setF0(freq);
this.filters[i] = newFilter;
this.recalculateFreqz(i);
}
};
this.setMinimumFrequency = function(freq) {
this.minFreq = freq;
this.recalculateFilters();
};
this.setMaximumFrequency = function(freq) {
this.maxFreq = freq;
this.recalculateFilters();
};
this.setBandsPerOctave = function(bands) {
this.bandsPerOctave = bands;
this.recalculateFilters();
};
this.setBandGain = function(bandIndex, gain) {
if (bandIndex < 0 || bandIndex > (this.filters.length-1)) {
throw "The band index of the graphical equalizer is out of bounds.";
}
if (!gain) {
throw "A gain must be passed.";
}
this.filters[bandIndex].setDbGain(gain);
this.recalculateFreqz(bandIndex);
};
this.recalculateFreqz = function(bandIndex) {
if (!this.calculateFreqzs) {
return;
}
if (bandIndex < 0 || bandIndex > (this.filters.length-1)) {
throw "The band index of the graphical equalizer is out of bounds. " + bandIndex + " is out of [" + 0 + ", " + this.filters.length-1 + "]";
}
if (!this.w) {
this.w = Float32Array(400);
for (var i=0; i<this.w.length; i++) {
this.w[i] = Math.PI/this.w.length * i;
}
}
var b = [this.filters[bandIndex].b0, this.filters[bandIndex].b1, this.filters[bandIndex].b2];
var a = [this.filters[bandIndex].a0, this.filters[bandIndex].a1, this.filters[bandIndex].a2];
this.freqzs[bandIndex] = DSP.mag2db(DSP.freqz(b, a, this.w));
};
this.process = function(buffer) {
var output = buffer;
for (var i = 0; i < this.filters.length; i++) {
output = this.filters[i].process(output);
}
return output;
};
this.processStereo = function(buffer) {
var output = buffer;
for (var i = 0; i < this.filters.length; i++) {
output = this.filters[i].processStereo(output);
}
return output;
};
}
/**
* MultiDelay effect by Almer Thie (http://code.almeros.com).
* Copyright 2010 Almer Thie. All rights reserved.
* Example: http://code.almeros.com/code-examples/delay-firefox-audio-api/
*
* This is a delay that feeds it's own delayed signal back into its circular
* buffer. Also known as a CombFilter.
*
* Compatible with interleaved stereo (or more channel) buffers and
* non-interleaved mono buffers.
*
* @param {Number} maxDelayInSamplesSize Maximum possible delay in samples (size of circular buffer)
* @param {Number} delayInSamples Initial delay in samples
* @param {Number} masterVolume Initial master volume. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
* @param {Number} delayVolume Initial feedback delay volume. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*
* @constructor
*/
function MultiDelay(maxDelayInSamplesSize, delayInSamples, masterVolume, delayVolume) {
this.delayBufferSamples = new Float32Array(maxDelayInSamplesSize); // The maximum size of delay
this.delayInputPointer = delayInSamples;
this.delayOutputPointer = 0;
this.delayInSamples = delayInSamples;
this.masterVolume = masterVolume;
this.delayVolume = delayVolume;
}
/**
* Change the delay time in samples.
*
* @param {Number} delayInSamples Delay in samples
*/
MultiDelay.prototype.setDelayInSamples = function (delayInSamples) {
this.delayInSamples = delayInSamples;
this.delayInputPointer = this.delayOutputPointer + delayInSamples;
if (this.delayInputPointer >= this.delayBufferSamples.length-1) {
this.delayInputPointer = this.delayInputPointer - this.delayBufferSamples.length;
}
};
/**
* Change the master volume.
*
* @param {Number} masterVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
MultiDelay.prototype.setMasterVolume = function(masterVolume) {
this.masterVolume = masterVolume;
};
/**
* Change the delay feedback volume.
*
* @param {Number} delayVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
MultiDelay.prototype.setDelayVolume = function(delayVolume) {
this.delayVolume = delayVolume;
};
/**
* Process a given interleaved or mono non-interleaved float value Array and adds the delayed audio.
*
* @param {Array} samples Array containing Float values or a Float32Array
*
* @returns A new Float32Array interleaved or mono non-interleaved as was fed to this function.
*/
MultiDelay.prototype.process = function(samples) {
// NB. Make a copy to put in the output samples to return.
var outputSamples = new Float32Array(samples.length);
for (var i=0; i<samples.length; i++) {
// delayBufferSamples could contain initial NULL's, return silence in that case
var delaySample = (this.delayBufferSamples[this.delayOutputPointer] === null ? 0.0 : this.delayBufferSamples[this.delayOutputPointer]);
// Mix normal audio data with delayed audio
var sample = (delaySample * this.delayVolume) + samples[i];
// Add audio data with the delay in the delay buffer
this.delayBufferSamples[this.delayInputPointer] = sample;
// Return the audio with delay mix
outputSamples[i] = sample * this.masterVolume;
// Manage circulair delay buffer pointers
this.delayInputPointer++;
if (this.delayInputPointer >= this.delayBufferSamples.length-1) {
this.delayInputPointer = 0;
}
this.delayOutputPointer++;
if (this.delayOutputPointer >= this.delayBufferSamples.length-1) {
this.delayOutputPointer = 0;
}
}
return outputSamples;
};
/**
* SingleDelay effect by Almer Thie (http://code.almeros.com).
* Copyright 2010 Almer Thie. All rights reserved.
* Example: See usage in Reverb class
*
* This is a delay that does NOT feeds it's own delayed signal back into its
* circular buffer, neither does it return the original signal. Also known as
* an AllPassFilter(?).
*
* Compatible with interleaved stereo (or more channel) buffers and
* non-interleaved mono buffers.
*
* @param {Number} maxDelayInSamplesSize Maximum possible delay in samples (size of circular buffer)
* @param {Number} delayInSamples Initial delay in samples
* @param {Number} delayVolume Initial feedback delay volume. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*
* @constructor
*/
function SingleDelay(maxDelayInSamplesSize, delayInSamples, delayVolume) {
this.delayBufferSamples = new Float32Array(maxDelayInSamplesSize); // The maximum size of delay
this.delayInputPointer = delayInSamples;
this.delayOutputPointer = 0;
this.delayInSamples = delayInSamples;
this.delayVolume = delayVolume;
}
/**
* Change the delay time in samples.
*
* @param {Number} delayInSamples Delay in samples
*/
SingleDelay.prototype.setDelayInSamples = function(delayInSamples) {
this.delayInSamples = delayInSamples;
this.delayInputPointer = this.delayOutputPointer + delayInSamples;
if (this.delayInputPointer >= this.delayBufferSamples.length-1) {
this.delayInputPointer = this.delayInputPointer - this.delayBufferSamples.length;
}
};
/**
* Change the return signal volume.
*
* @param {Number} delayVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
SingleDelay.prototype.setDelayVolume = function(delayVolume) {
this.delayVolume = delayVolume;
};
/**
* Process a given interleaved or mono non-interleaved float value Array and
* returns the delayed audio.
*
* @param {Array} samples Array containing Float values or a Float32Array
*
* @returns A new Float32Array interleaved or mono non-interleaved as was fed to this function.
*/
SingleDelay.prototype.process = function(samples) {
// NB. Make a copy to put in the output samples to return.
var outputSamples = new Float32Array(samples.length);
for (var i=0; i<samples.length; i++) {
// Add audio data with the delay in the delay buffer
this.delayBufferSamples[this.delayInputPointer] = samples[i];
// delayBufferSamples could contain initial NULL's, return silence in that case
var delaySample = this.delayBufferSamples[this.delayOutputPointer];
// Return the audio with delay mix
outputSamples[i] = delaySample * this.delayVolume;
// Manage circulair delay buffer pointers
this.delayInputPointer++;
if (this.delayInputPointer >= this.delayBufferSamples.length-1) {
this.delayInputPointer = 0;
}
this.delayOutputPointer++;
if (this.delayOutputPointer >= this.delayBufferSamples.length-1) {
this.delayOutputPointer = 0;
}
}
return outputSamples;
};
/**
* Reverb effect by Almer Thie (http://code.almeros.com).
* Copyright 2010 Almer Thie. All rights reserved.
* Example: http://code.almeros.com/code-examples/reverb-firefox-audio-api/
*
* This reverb consists of 6 SingleDelays, 6 MultiDelays and an IIRFilter2
* for each of the two stereo channels.
*
* Compatible with interleaved stereo buffers only!
*
* @param {Number} maxDelayInSamplesSize Maximum possible delay in samples (size of circular buffers)
* @param {Number} delayInSamples Initial delay in samples for internal (Single/Multi)delays
* @param {Number} masterVolume Initial master volume. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
* @param {Number} mixVolume Initial reverb signal mix volume. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
* @param {Number} delayVolume Initial feedback delay volume for internal (Single/Multi)delays. Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
* @param {Number} dampFrequency Initial low pass filter frequency. 0 to 44100 (depending on your maximum sampling frequency)
*
* @constructor
*/
function Reverb(maxDelayInSamplesSize, delayInSamples, masterVolume, mixVolume, delayVolume, dampFrequency) {
this.delayInSamples = delayInSamples;
this.masterVolume = masterVolume;
this.mixVolume = mixVolume;
this.delayVolume = delayVolume;
this.dampFrequency = dampFrequency;
this.NR_OF_MULTIDELAYS = 6;
this.NR_OF_SINGLEDELAYS = 6;
this.LOWPASSL = new IIRFilter2(DSP.LOWPASS, dampFrequency, 0, 44100);
this.LOWPASSR = new IIRFilter2(DSP.LOWPASS, dampFrequency, 0, 44100);
this.singleDelays = [];
var i, delayMultiply;
for (i = 0; i < this.NR_OF_SINGLEDELAYS; i++) {
delayMultiply = 1.0 + (i/7.0); // 1.0, 1.1, 1.2...
this.singleDelays[i] = new SingleDelay(maxDelayInSamplesSize, Math.round(this.delayInSamples * delayMultiply), this.delayVolume);
}
this.multiDelays = [];
for (i = 0; i < this.NR_OF_MULTIDELAYS; i++) {
delayMultiply = 1.0 + (i/10.0); // 1.0, 1.1, 1.2...
this.multiDelays[i] = new MultiDelay(maxDelayInSamplesSize, Math.round(this.delayInSamples * delayMultiply), this.masterVolume, this.delayVolume);
}
}
/**
* Change the delay time in samples as a base for all delays.
*
* @param {Number} delayInSamples Delay in samples
*/
Reverb.prototype.setDelayInSamples = function (delayInSamples){
this.delayInSamples = delayInSamples;
var i, delayMultiply;
for (i = 0; i < this.NR_OF_SINGLEDELAYS; i++) {
delayMultiply = 1.0 + (i/7.0); // 1.0, 1.1, 1.2...
this.singleDelays[i].setDelayInSamples( Math.round(this.delayInSamples * delayMultiply) );
}
for (i = 0; i < this.NR_OF_MULTIDELAYS; i++) {
delayMultiply = 1.0 + (i/10.0); // 1.0, 1.1, 1.2...
this.multiDelays[i].setDelayInSamples( Math.round(this.delayInSamples * delayMultiply) );
}
};
/**
* Change the master volume.
*
* @param {Number} masterVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
Reverb.prototype.setMasterVolume = function (masterVolume){
this.masterVolume = masterVolume;
};
/**
* Change the reverb signal mix level.
*
* @param {Number} mixVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
Reverb.prototype.setMixVolume = function (mixVolume){
this.mixVolume = mixVolume;
};
/**
* Change all delays feedback volume.
*
* @param {Number} delayVolume Float value: 0.0 (silence), 1.0 (normal), >1.0 (amplify)
*/
Reverb.prototype.setDelayVolume = function (delayVolume){
this.delayVolume = delayVolume;
var i;
for (i = 0; i<this.NR_OF_SINGLEDELAYS; i++) {
this.singleDelays[i].setDelayVolume(this.delayVolume);
}
for (i = 0; i<this.NR_OF_MULTIDELAYS; i++) {
this.multiDelays[i].setDelayVolume(this.delayVolume);
}
};
/**
* Change the Low Pass filter frequency.
*
* @param {Number} dampFrequency low pass filter frequency. 0 to 44100 (depending on your maximum sampling frequency)
*/
Reverb.prototype.setDampFrequency = function (dampFrequency){
this.dampFrequency = dampFrequency;
this.LOWPASSL.set(dampFrequency, 0);
this.LOWPASSR.set(dampFrequency, 0);
};
/**
* Process a given interleaved float value Array and copies and adds the reverb signal.
*
* @param {Array} samples Array containing Float values or a Float32Array
*
* @returns A new Float32Array interleaved buffer.
*/
Reverb.prototype.process = function (interleavedSamples){
// NB. Make a copy to put in the output samples to return.
var outputSamples = new Float32Array(interleavedSamples.length);
// Perform low pass on the input samples to mimick damp
var leftRightMix = DSP.deinterleave(interleavedSamples);
this.LOWPASSL.process( leftRightMix[DSP.LEFT] );
this.LOWPASSR.process( leftRightMix[DSP.RIGHT] );
var filteredSamples = DSP.interleave(leftRightMix[DSP.LEFT], leftRightMix[DSP.RIGHT]);
var i;
// Process MultiDelays in parallel
for (i = 0; i<this.NR_OF_MULTIDELAYS; i++) {
// Invert the signal of every even multiDelay
outputSamples = DSP.mixSampleBuffers(outputSamples, this.multiDelays[i].process(filteredSamples), 2%i === 0, this.NR_OF_MULTIDELAYS);
}
// Process SingleDelays in series
var singleDelaySamples = new Float32Array(outputSamples.length);
for (i = 0; i<this.NR_OF_SINGLEDELAYS; i++) {
// Invert the signal of every even singleDelay
singleDelaySamples = DSP.mixSampleBuffers(singleDelaySamples, this.singleDelays[i].process(outputSamples), 2%i === 0, 1);
}
// Apply the volume of the reverb signal
for (i = 0; i<singleDelaySamples.length; i++) {
singleDelaySamples[i] *= this.mixVolume;
}
// Mix the original signal with the reverb signal
outputSamples = DSP.mixSampleBuffers(singleDelaySamples, interleavedSamples, 0, 1);
// Apply the master volume to the complete signal
for (i = 0; i<outputSamples.length; i++) {
outputSamples[i] *= this.masterVolume;
}
return outputSamples;
};
/dev/2dshooting2/devver/20170412/test.html
<!doctype html>
<html lang="ja">
<head>
<meta charset="UTF-8">
<title>3d sample</title>
<script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/three.js/97/three.min.js"></script>
<script>
// 共通で使用する変数
var mesh, renderer, scene, camera;
// 設定
var width = 1280,
height = 640;
document.addEventListener( 'DOMContentLoaded', function(){
// シーンの用意
scene = new THREE.Scene();
// カメラの設定
var fov = 45, // 画角
aspect = width / height, // アスペクト比
near = 1, // 手前
far = 700; // 奥行き
camera = new THREE.PerspectiveCamera( fov, aspect, near, far ); // カメラの準備
camera.position.set( 0, 0, 50 ); // カメラ位置の設定
// レンダラーの設定
renderer = new THREE.WebGLRenderer(); // レンダラーの用意
renderer.setSize( width, height ); // サイズを指定
var bgColor = 0x000000;
renderer.setClearColor(bgColor, 1); // 背景色を指定
document.body.appendChild( renderer.domElement ); // bodyへ追加
// ライトの設定
var lightColor = 0xffffff; // ライトの色
var directionalLight = new THREE.DirectionalLight( lightColor ); // ライトの色を指定
directionalLight.position.set( 1, 1, 1 ); // ライトの位置の設定
scene.add( directionalLight ); // ライトの追加
var ambient = new THREE.AmbientLight(0xffffff);
scene.add(ambient);
// jsonファイルの読み込み
var loader = new THREE.JSONLoader();
var json = './data/test.json';// jsonパスの指定
loader.load( json, function ( geometry, materials ) {
var faceMaterial = new THREE.MeshFaceMaterial( materials );
var materialColor = 0xff8700; // マテリアルの色
faceMaterial.materials[0].color = new THREE.Color(materialColor); // マテリアルの色の設定
//faceMaterial.materials[0].wireframe = true; // ワイヤーフレーム表示にする
mesh = new THREE.Mesh( geometry, faceMaterial );
mesh.position.set( 0,0,0); // 位置の設定
mesh.scale.set( 10, 10, 10 ); // スケールの設定
scene.add( mesh ); // シーンへメッシュの追加
renderLoop(); // レンダリング実行
} );
});
// レンダリング処理
function renderLoop () {
var speed = 0.005; // 追加される値
// メッシュの回転
var meshRotaX = mesh.rotation.x + speed,
meshRotaY = mesh.rotation.y + speed,
meshRotaZ = mesh.rotation.z + speed;
mesh.rotation.set(meshRotaX, meshRotaY, meshRotaZ);
renderer.render( scene, camera ); // レンダリング
requestAnimationFrame( renderLoop ); // ループ処理
}
</script>
</head>
<body>
</body>
</html>